Looking Beyond the Cutaneous Manifestations of Covid 19, Part 2: The Pathology and Pathogenesis - A Review

Main Article Content

A. S. V. Prasad


This is the second part of the article, titled "looking beyond the cutaneous manifestations of Covid 19 Part 1: The Clinical Spectrum – A Review”, which is exclusively relegated to the pathology and pathogenesis aspects. The cutaneous manifestations of Covid 19 are classified into four broad groups, from the pathology and pathogenesis point of view and the histopathology of all the cutaneous lesions are briefly reviewed. The role of vasculitis and endothelitis in the pathogenesis of skin lesions in Covid 19, are discussed. The vasculitis and thrombotic microangiopathy (TMA) are discussed at length as they occupy the centre stage of pathogenesis, in the literature, at present. The various types of vasculitis reported in literature, are classified on the basis of skin lesions seen and the rationality of the various terms used in the context of the pathogenesis are explained. It is stressed that that the central players in the pathogenesis of skin lesions in Covid 19 are, vasculitis,  activation of complement pathways and coagulation cascade and the cross- talk between the two at various points in their respective pathways. For the details of the complement activation, activation of coagulative cascade and for the details of the role of innate and adaptive immunity system, the readers may refer to the author’s previous article titled “Local Immunity Concept in the Context of the Novel Corona Viral Infection- A Consideration.” *** (reference of which is provided under the additional information at the end of the article). Some contentious issues concerning the role of the vasculitis and immune complex mediated damage, of the vessel wall in the pathogenesis of cutaneous lesions of Covid 19, are discussed. A non-immune, non-vasculitis, alternative mechanism is suggested by floating a two hit hypothesis. The necessity to apply the rigours of diagnostic criteria of vasculitis is emphasized to get a standard picture of the histopathology and pathogenesis of cutaneous manifestations of Covid 19 by future research.

Vasculitis, thrombotic microangiopathy, MAC complex, coagulation cascade, complement activation.

Article Details

How to Cite
Prasad, A. S. V. (2020). Looking Beyond the Cutaneous Manifestations of Covid 19, Part 2: The Pathology and Pathogenesis - A Review. Asian Journal of Research in Dermatological Science, 3(4), 1-21. Retrieved from https://journalajrdes.com/index.php/AJRDES/article/view/30112
Review Article


Nyssen A, Benhadou F, Magnée M, et al. Chilblains Vasa. 2020;49:133-140.

Cappel JA, Wetter DA. Clinical characteristics, etiologic associations, laboratory findings, treatment, and proposal of diagnostic criteria of pernio (chilblains) in a series of 104 patients at Mayo Clinic, 2000 to 2011. Mayo Clin Proc. 2014;89:207-215.

Kolivas et al. Coronavirus (COVID-19) infection–induced chilblains: A case report with histopathologic findings JAAD Case Rep. Published online. 2020;6(6):489–492.
DOI: 10.1016/j.jdcr.2020.04.011
PMCID: PMC7194989
PMID: 32363225

Aram Boada, et al. Perniosis: Clinical and and histopathological analysis. Am J Dermatopathol; 2010.

Weedon JW. Patterson Weedon’s skin pathology, (4th Ed.), Elsevier, New York Google Scholar; 2015.

Cribier N, Djeridi B, Peltre, et al. A histologic and immunohistochemical study of chilblains J Am Acad Dermatol. Article Download PDF View Record in Scopus Google Scholar. 2001;45:924-929.

James, William D, Berger Timothy G, et al. Andrews' diseases of the skin: clinical dermatology. Saunders Elsevier.
ISBN 978-1-4377-0314-6; 2011.

Rapini Ronald P, Bolognia Jean L, Jorizzo Joseph L. Dermatology: 2-Volume Set. St. Louis: Mosby. ISBN 978-1-4160-2999-1; 2007.

Weedon JW. Patterson Weedon’s Skin Pathology (4th Ed.), Elsevier, New York; 2015.

Cribier N, Djeridi B. Peltre, et al. A histologic and immunohistochemical study of chilblains. J Am Acad Dermatol. Article Download PDF View Record in Scopus Google Scholar. 2001;45:924-929.

Chi Tran, Gary McEwen, Garth Robert Fraga. Chilblain-like leukaemia cutis. Case Rep. bcr2016214838; 2016.
DOI: 10.1136/bcr-2016-214838
PMCID: PMC4840644
PMID: 27095810

Wiley. "Study supports link between COVID-19 and 'COVID Toes'." Science Daily. Science Daily; 2020.

Colmenero C, Santonja M, Alonso‐Riaño L, Noguera‐Morel A, Hernández‐Martín D, Andina T, Wiesner JL, Rodríguez‐Peralto L, Requena A. Torrelo. SARS‐CoV‐2 endothelial infection causes COVID‐19 chilblains: histopathological, immunohisto-chemical and ultraestructural study of 7 paediatric cases. British Journal of Dermatology; 2020.
DOI: 10.1111/bjd.19327

Gianotti R, Veraldi S, Recalcati S, et al. Cutaneous clinico‐pathological findings in three COVID‐19‐positive patients observed in the metropolitan area of Milan, Italy. Acta Derm Venereol; 2020.
[Epub ahead of print]

Gürkan Kaya Aysin Kaya, Jean-Hilaire Saurat. Clinical and histopathological features and potential pathological mechanisms of skin lesions in COVID-19: Review of the literature dermatopathology. 2020;7(1):3-16.

Sanchez A, Sohier P, Benghanem S, et al. Digitate papulosquamous eruption associated with severe acute respiratory syndrome coronavirus 2 infection. JAMA Dermatol; 2020.
DOI: 10.1001/jamadermatol.2020.1704
[Epub ahead of print]

Fernandez‐Nieto D, Ortega‐Quijano J, Jimenez‐Cauhe, et al. Clinical and histological characterization of vesicular COVID‐19 rashes: A prospective study in a tertiary care hospital. Clinical and xperimental Dermatology.

Eriko Itoh, Minao Furumura, Masutaka. Furue: Histopathology of urticaria. Current Treatment Options in Allergy. 2017;4(2).
DOI: 10.1007/s40521-017-0144-2

Diaz‐Guimaraens B, Dominguez‐Santas M, Suarez‐Valle A, et al. Petechial skin rash associated with severe acute respiratory syndrome coronavirus 2 infection. JAMA Dermatol; 2020.
DOI: 10.1001/jamadermatol.2020.1741
[Epub ahead of print]

Llamas‐Velasco M, Muñoz‐Hernández P. Thrombotic occlusive vasculopathy in a skin biopsy from a livedoid lesion of a patient with COVID‐19.British Journal of Dermatology; 2020.

Freeman EE, McMahon DE, Lipoff JB, Rosenbach M, Kovarik C, Desai SR, Harp J, Takeshita J, French LE, Lim HW, Thiers BH, Hruza GJ, Fox LP. The spectrum of COVID-19-associated dermatologic manifestations: An international registry of 716 patients from 31 countries. J Am Acad Dermatol; 2020.

Duong JDT, Jachiet M, Velter C, Lestang P, Cassius C, Arsouze A, Domergue Than Trong E, Bagot M, Begon E, Sulimovic L, Rybojad M. SOJ Eur. Vascular skin symptoms in COVID-19: A French observational study. Acad Dermatol Venereol; 2020.

Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter-Stoltzfus A, Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1.

Llamas-Velasco M, Muñoz-Hernández P, Lázaro-González J, Reolid-Pérez A, Abad-Santamaría B, Fraga J, Daudén-Tello E. Thrombocclusive vasculopathy in a skin biopsy from a livedoid lesion of a patient witThrombotich COVID-19. Br J Dermatol; 2020.

Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M, Bonanomi E, D’Antiga L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. Lancet. 2020;395:1771–1778.

Giesker DW, Pastuszak WT, Forouhar FA, Krause PJ, Hine P. Lymph node biopsy for early diagnosis in Kawasaki disease. Am J Surg Pathol. 1982;6(6):493-501.

Sugawara T. Immuno- pathology of Kawasaki Disease Arerugi. 1991;40(4): 476-482.

Joob B, Wiwanitkit COVID-19 can present with a rash and be mistaken for dengue. J Am Acad Dermatol; 2020.
DOI: 10.1016/j.jaad.2020.03.036

Mark A. Lusco, Agnes B. Fogo, Behzad Najafian, Charles E. Alpers. Thrombotic Microangiopathy AJKD. Atlas of Renal Pathology; 2016.

Ackerman AB, Boer A, Bennin B, Gottlieb G. Vasculitis: Basic patterns and analysis of them in histologic diagnosis of inflammatory skin diseases. An Algorithmic Method Based on Pattern Analysis, 3rd Ed. New York: ArdorScribendi. 2005;278-88.

Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. Revised international chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheum. 2013;65:1-11.

Jennette JC, Falk RJ, Andrassy K, Bacon PA, Churg J, Gross WL, et al. Nomenclature of systemic vasculitides: Proposal of an international consensus conference. Arthritis Rheum 1994;37:187-92.

McKee PH. Vascular diseases in McKee′s pathology of the skin with clinical correlations. In: Calonje E, Brenn T, Lazar A, Editors. China: Elsevier Saunders. 2012;1(4)658-710.

Kenar D. Jhave, Lea R. Meir, Bessy Suyin Flores Chang: Kidney Int. Cutaneous small vessel vasculitis secondary to COVID‐19 infection: A case report. 2020;98(2):509–512.

Carlson JA, Ng BT, Chen KR. Cutaneous vasculitis update: Diagnostic criteria, classification, epidemiology, etiology, pathogenesis, evaluation and prognosis. Am J Dermatopathol. 2005;27:504-28.

Ackerman AB, Boer A, Bennin B, Gottlieb G. Patterns of direct immunofluorescence for diagnosis of inflammatory skin diseases. In: Histologic Diagnosis of Inflammatory Skin Diseases. An Algorithmic Method Based on Pattern Analysis, New York: ArdorScribendi. 2005;447-54.

Andrew Carlson, et al. Am J Dermatopathol; 2006.

Journal of the European Academy of Dermatology and Venereology; 2020.
DOI: 10.1016/j.kint.2020.05.025

Max Yates. ANCA-associated vasculitis. Clin Med (Lond). 2017;17(1):60–64.

Lee JS, Kossard S, McGrath MALee JS, et al. Lmphocytic vasculitis. Arch Dermatol. 2008;144(9):1215-1216.
DOI: 10.1001/archderm.144.9.1215

Becker RC. COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis. 2020;10:100.

Lee JSS, Kossard S, McGrath M. Lymphocytic thrombophilic arteritis. A newly described medium-sized vessel arteritis of the skin. Arch Dermatol. 2008;144(9):1175–1182. [PubMed] [Google Scholar]

Robert I Kelly, Edmund Wee, Chasari Tancharoen. Three cases of lymphocytic thrombophilic arteritis presenting with an annular eruption. Australasian Journal of Dermatology. Case Report. First published. 59;2.

Recalcati purpura and hemolytic uremic syndrome are distinct pathologic entities. A review of 56 autopsy cases. Arch Pathol Lab Med. 2003;127(7):834-839.

Kolivras A, Dehavay F, Delplace D, et al. Coronavirus (COVID‐19) infection‐induced chilblains: A case report with histopathologic findings. JAAD Case Rep. 2020;6:489–92.

Kato N, Ueno H, Mimura M. Histopathology of cutaneous changes in non‐drug‐induced coma. Am J Dermatopathol. 1996;18:344–50.

Nonvasculitic Vasculopathy, Llamas-Velasco M, Alegría V, Santos-Briz Á, Cerroni L, Kutzner H, Requena L. Occlusive nonvasculitic vasculopathy. Am J Dermatopathol. 2017;39(9):637-662.
DOI: 10.1097/DAD.0000000000000766

Mar Llamas-Velasco, Victoria Alegría, Angel Santos-Briz. Occlusive nonvasculitic vasculopathy: A review. American Journal of Dermatopathology. 2016;39(9):1.
DOI: 10.1097/DAD.0000000000000766

Laszik ZG, Kambham N, Silva FG. Thrombotic microangiopathies. In: Heptinstall's Pathology of the Kidney, Jennett JC, D'Agati VD, Olson JL, et al (Eds), Lippincott Williams & Wilkins, Philadelphia; 2014.

PubMedTISyndromes of thrombotic microangiopathy. George JN, Nester CM. N Engl J Med. 2014;371(7):654.

Brodsky ERA. Severe COVID-19 infection and thrombotic microangiopathy: Success does not come easily. Br J Haematol. 2020;189(6):227-230.
DOI: 10.1111/bjh.16783

Hosler GA, Cusumano AM, Hutchins GM. Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome are distinct pathologic entities. A review of 56 autopsy cases. Arch Pathol Lab Med. D. Jhaveri, Lea R. Meir, Negin Hajizadeh. Thrombotic microangiopathy in a patient with COVID-19. Kidney International. 2003;127(7):834-839.

Kavanagh D, Goodship TH. Atypical hemolytic uremic syndrome, genetic basis, and clinical manifestations. Hematology Am Soc Hematol Educ Program. 2011;2011:15-20.
DOI: 10.1182/asheducation-2011.1.15

George JN. Nester: Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371(7):654.

Rajpurkar M, Alonzo TA, Wang YC, et al. Risk markers for significant bleeding and thrombosis in pediatric acute promyelocytic leukemia; Report From the Children's Oncology Group Study AAML0631. J Pediatr Hematol Oncol. 2019;41(1):51- 55.
DOI: 10.1097/MPH.0000000000001280

Kambham N, Silva FG. Thrombotic microangiopathies. In: Heptinstall's Pathology of the Kidney, Jennett JC, D'Agati VD, Olson JL, et al. (Eds), Lippincott Williams & Wilkins, Philadelphia; 2014.

Gibson GE, Li H, Pittelkow MR. Homocysteinemia and livedoid vasculitis. J Am Acad Dermatol. 1999;40(2-1):279-81.

Meiss F, Marsch WC, Fischer M. Livedoid vasculopathy. The role of hyperhomocysteinemia and its simple therapeutic consequences. Eur J Dermatol. 2006;16:159-62.

Biedermann T, Flaig MJ, Sander CA. Livedoid vasculopathy in a patient with factor V mutation (Leiden). J Cutan Pathol. 2000;27:410-2.

Kavala M, Kocaturk E, Zindanci I, Turkoglu Z, Altintas S. A case of livedoid vasculopathy associated with factor V Leiden mutation: Successful treatment with oral warfarin. J Dermatolog Treat. 2008;19:121-3.

Gotlib J, Kohler S, Reicherter P, Oro AE, Zehnder JL. Heterozygous prothrombin G20210A gene mutation in a patient with livedoid vasculitis. Arch Dermatol. 2003;139:1081-3.

Boyvat A, Kundakçi N, Babikir MO, Gürgey E. Livedoid vasculopathy associated with heterozygous protein C deficiency. Br J Dermatol. 2000;143:840-2.

Klein KL, Pittelkow MR. Tissue plasminogen activator for treatment of livedoid vasculitis. Mayo Clin Proc. 1992;67:923-33.

Jonathan H. Fole, Edward M. Conway. Cross talk pathways between coagulation and inflammation. Circulation Research. 2016;118:1392–1408.

Schraufstatter IU, Trieu K, Sikora L, Sriramarao P, DiScipio R. Complement c3a and c5a induce different signal transduction cascades in endothelial cells. J Immunol. 2002;169:2102–2110.

Osterud B. Cellular interactions in tissue factor expression by blood monocytes. Blood Coagul Fibrinolysis. 1995;6(1):S20–S25.

KE, Vaporciyan AA, Bonish BK, Jones ML, Johnson KJ, Glovsky MM, Eddy SM, Ward PA. C5a-induced expression of P-selectin in endothelial cells. J Clin Invest. 1994;94:1147–1155.

Wiedmer T, Esmon CT, Sims PJ. Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood. 1986;68:875–880.

Camerer E, Huang W, Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA. 2000;97:5255.

Demetz G, Seitz I, Stein A, Steppich B, Groha P, Brandl R, Schömig A, Ott I. Tissue factor-factor VIIa complex induces cytokine expression in coronary artery smooth muscle cells. Atherosclerosis. 2010;212:466–471.

Bianchi ME. DAMPs, PAMPs and alarmins: All we need to know about danger. J Leukoc Biol. 2007;81:1–5.

Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors.Trends Mol Med. 2007;13:460–469.

Pawlinski R, Pedersen B, Schabb.auer G, Tencati M, Holscher T, Boisvert W, Andrade-Gordon P, Frank RD, Mackman N. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia. Blood. 2004;103:1342–1347.

Drake WT, Lopes NN, Fenton JW, Issekutz AC. Thrombin enhancement of interleukin-1 and tumor necrosis factor-alpha induced polymorphonuclear leukocyte migration. Lab Invest. MedlineGoogle Scholar. 1992;67:617–627

Sower LE, Froelich CJ, Carney DH, Fenton JW, Klimpel GR. Thrombin induces IL-6 production in fibroblasts and epithelial cells. Evidence for the involvement of the seven-transmembrane domain (STD) receptor for alpha-thrombin.J Immunol. 1995;155:895–901.

Von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209:819–835.

Szaba FM, Smiley ST. Roles for thrombin and fibrin (ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood. 2002;99:1053–105974. WT, Lopes NN, Fenton JW, Issekutz AC. Thrombin enhancement of interleukin-1 and tumor necrosis factor-alpha induced polymorphonuclear leukocyte migration. Lab Invest. MedlineGoogle Schola. 1992;67:617–627.

Camera M, Brambilla M, Toschi V, Tremoli E. Tissue factor expression on platelets is a dynamic event. Blood. 2010;116:5076.

Del Conde I, Crúz MA, Zhang H, López JA, Afshar-Kharghan V. Platelet activation leads to activation and propagation of the complement system. J Exp Med. 2005;201(6):871-879.

Davis AE. Kenney DM. J Clin Invest. 1979;64(3):721–728.

Loubele ST, Spek CA, Leenders P, van Oerle R, Aberson HL, van der Voort D, Hamulyák K, Petersen LC, Spronk HM, ten Cate H. Active site inhibited factor VIIa attenuates myocardial ischemia/ reperfusion injury in mice.J Thromb Haemost. 2009;7:290–298.

Ruf W, Samad F. Tissue factor pathways linking obesity and inflammation. Hamostaseologie. 2015;35:27.

Bode MF, Mackman N. Protective and pathological roles of tissue factor in the heart. Hamostaseologie. 2015;35:37–46.

Maroney SA, Ellery PE, Mast AE. Alternatively spliced isoforms of tissue factor pathway inhibitor. Thromb Res. 2010;125(1):S52–S56.

Ellery PE, Adams MJ. Tissue factor pathway inhibitor: Then and now. Semin Thromb Hemost. 2014;40:881–886.

Almashat. Vasculitis in COVID-19: A literature review. J Vasc. 2006;6.

Pan Zhai, Ding Y, Wu X, Long J, et al. The epidemiology, diagnosis and treatment of COVID19. Int J Antimicrob Agents. 2020;55:105-955.

Shane P, Herbert, Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol. 2011;12:551-564.

Luca Roncati, Giulia Ligabue, Luca Fabbiani, Claudia Malagoli, et al. Type 3 hypersensitivity in COVID-19 vasculitis. Clin Immunol. 2020;217:108487.